IPAC BC EDUCATION DAY 2019 HOT TAKES ON OLD TOPICS IN INFECTION PREVENTION

On behalf of the VCH IPAC team:

Titus Wong, MD, MHSc, FRCPC

Regional Medical Director, Infection Prevention & Control, VCH Medical Microbiologist, Medical Microbiology and Infection Prevention, VCH Clinical Assistant Professor, Faculty of Medicine, UBC Department of Pathology and Laboratory Medicine, VCH, UBC

ACKNOWLEDGEMENTS

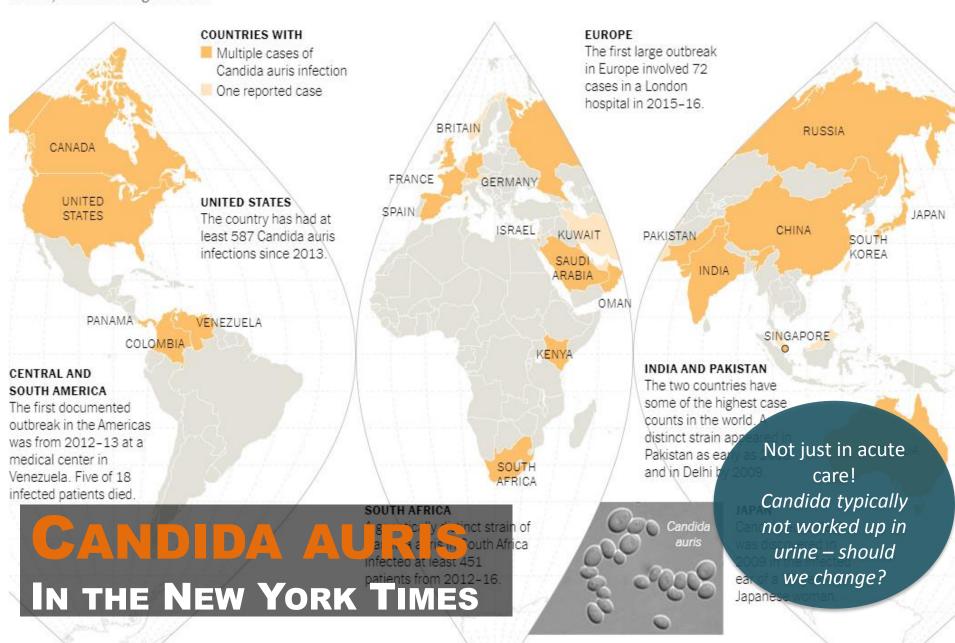
- IPAC BC & Amira, Jacquie thank you for the invitation
- The super duper awesomeness bestest goodest incrediblest Infection Control Practitioners!!
- Our amazing technologists and the division of Medical Microbiology and Infection Prevention
- Crothall and our amazing EVS team
- FMO!!!
- Allison Muniak and VCH Quality Patient Safety and Infection Control
- Liz, Marthe, Teresa, Jaime, Meghan and the K9 team
- Marthe, Rita, Juliana, Mary, Tamara, Gail, Eric for C. auris work
- Aleksandra Gara and the Information, Solutions and Analytics team
- Richard Dixon and CHAIR Canada
- Linda Hoang, Joanne Archer and PICNET
- UBC and VGH Hospital Foundation for supporting quality improvement and research

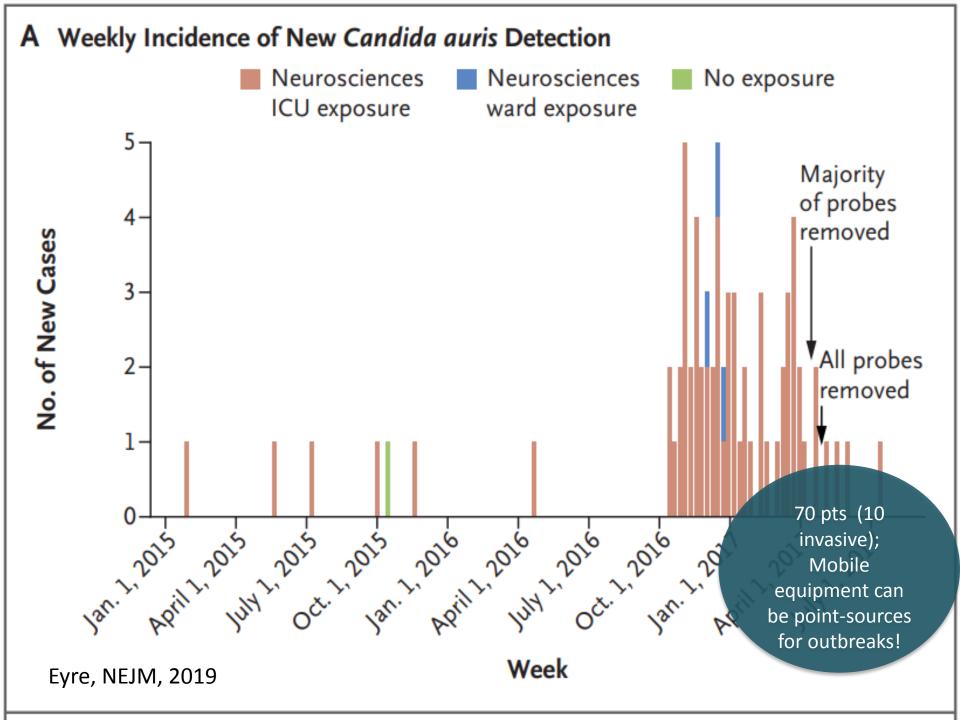
NOTTODAY EBOLA. NOTTODAY!!!!

f fascinately

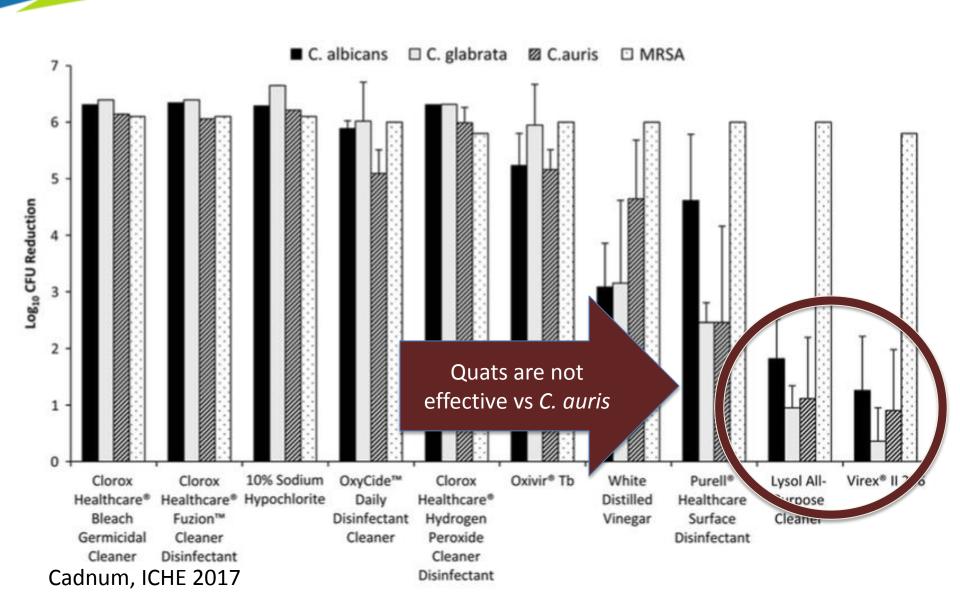
WHAT'S NEW IN 2018/19?

- "See, aurs isn't so bad, is it?"
- "Influenz"ing patient outcomes"
 - "Making a big *C'diff*erence"
 - "HAI, how you doing?"

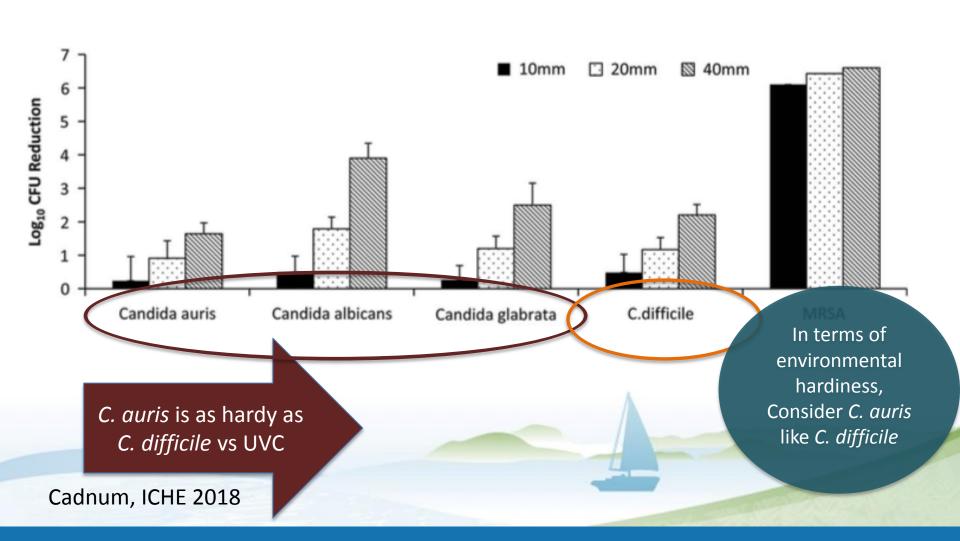

OUTBREAK DIAGNOSIS ENVIRONMENTAL **CAURIS** HIGH **PATHOGENICITY** HARDINESS **MULTIDRUG** RESISTANCE


CANDIDA AURIS

WHAT'S THE BIG DEAL?


Candida Auris

A deadly, drug-resistant fungus is infecting patients in hospitals and nursing homes around the world. The fungus seems to have emerged in several locations at once, not from a single source.



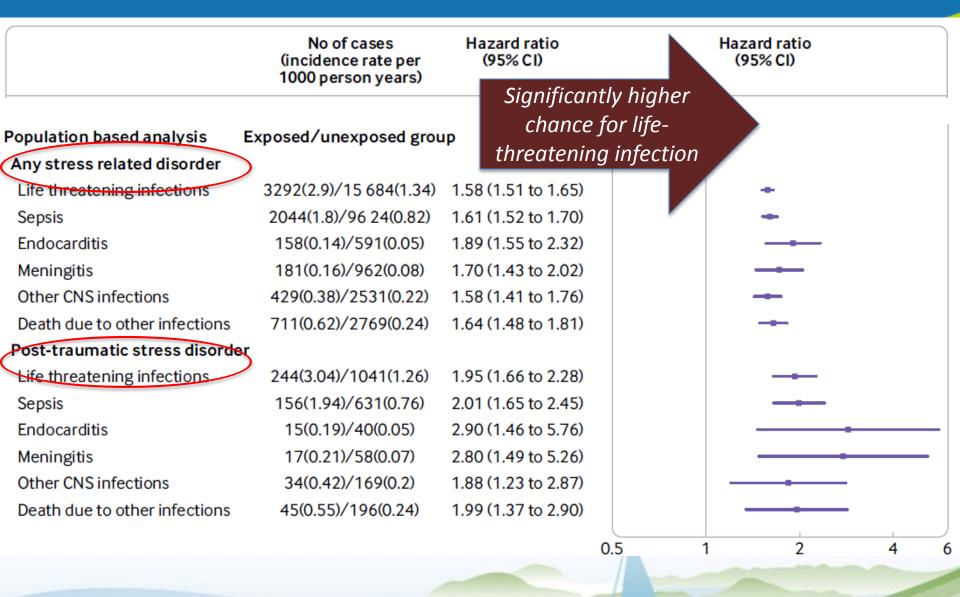
C. auris and disinfectants – Quats don't work

UVC and *C. auris* – distance matters

Ensure Micro can

Understand how to clean and disinfect environment

C AURIS CONTROL


Early Recognition
And treatment

Echinocandins are empiric drug of choice

CANDIDA AURIS

WHAT CAN WE DO?

IDSA GUIDELINE

Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenza^a

Timothy M. Uyeki, Henry H. Bernstein, John S. Bradley, Janet A. Englund, Thomas M. File Jr, Alicia M. Fry, Stefan Gravenstein, Frederick G. Hayden, Scott A. Harper, Jon Mark Hirshon, Michael G. Ison, B. Lynn Johnston, Shandra L. Knight, Allison McGeer, Laura E. Riley, Gameron R. Wolfe, Paul E. Alexander, Mark Hirshon, Cameron R. Wolfe, Shandra L. Knight, Allison McGeer, Allison McGeer, Laura E. Riley, Gameron R. Wolfe, Cameron R. Wolfe, Shandra L. Knight, Allison McGeer, Laura E. Riley, Shandra L. Knight, Laura E. Riley, Shandra L. Knight, Cameron R. Wolfe, Shandra L. Knight, McGeer, Laura E. Riley, Shandra L. Knight, McGeer, Laura E. Riley, Shandra L. Knight, Cameron R. Wolfe, Shandra L. Knight, Cameron R. Wolfe, Shandra L. Knight, McGeer, McGeer, Cameron R. Wolfe, Shandra L. Knight, McGeer, Mc

What are some updates from 2009?

- Recommended NAAT (nucleic acid amplificiation tests) over RIDT (viral antigen testing) due to NATs having superior performance
- If suspecting flu, treat ASAP before lab confirmation (and independent of vaccination status, onset, duration of illness)
- Avoid steroids if possible unless there is a compelling reason; also avoid IVIG
- What's missing: NEW FLU DRUG, BALOXIVIR

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

M.Sc

SEPTEMBER 6, 2018

VOL. 379 NO. 10

D., and Akira Watana

Baloxavir Marboxil for Uncomplicated Influenza in Adults and Adolescents

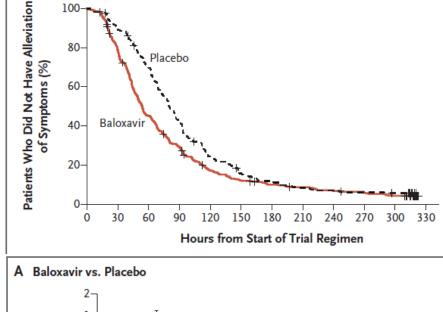
Frederick G. Hayden, M.D., Norio Sugaya, M.D., Nobuo Hirotsu, M.D., Ph.D., Nelson Lee, M.D., Menno D. de Jong, M.D., Ph.D., Aeron C. Hurt, Ph.D., Tadashi Ishida, M.D., Ph.D., Hisakuni Sekino, M.D., Ph.D., Kota Yamada, M.D., Simon Portsmouth, M.D., Keiko Kawaguchi, M.Sc., Takao Shishido, Ph.D.,

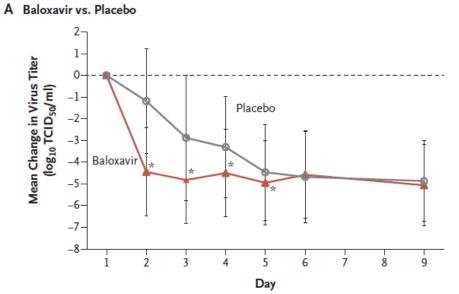
M.Sc.

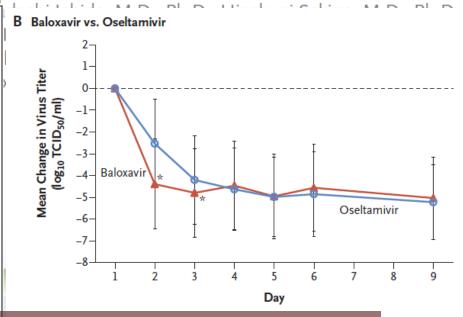
Healthy patients, uncomplicated flu

Baloxivir vs. Placebo, Oseltamivir raster Group*
symptom relief
vs placebo,
similar to
oseltamivir

GAP:
What about
complicated
patients? E.g.
most of ours...


The NEW FNGLAND MEDICINE




VOL. 379 NO. 10

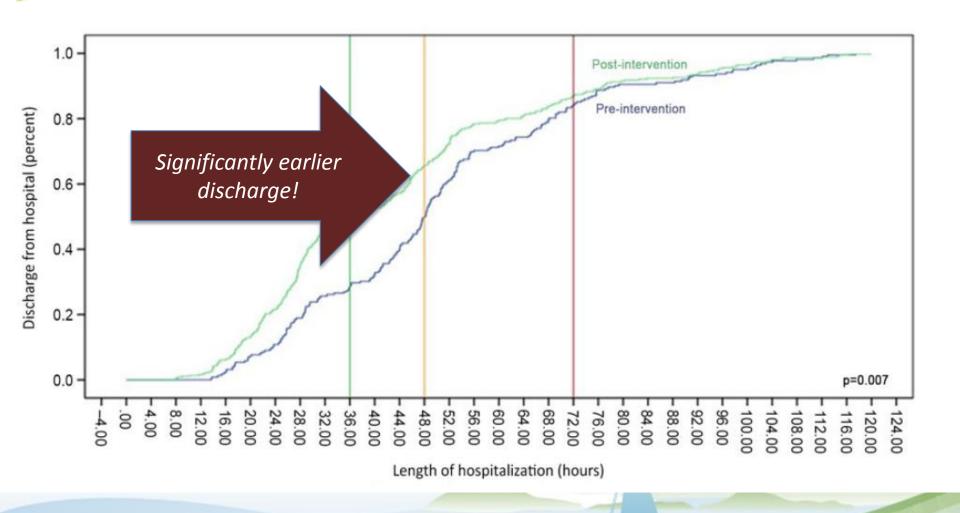
Jncomplicated Influenzal Adolescents

Nobuo Hirotsu, M.D., Ph.D., Nelson Lee, M.D.,

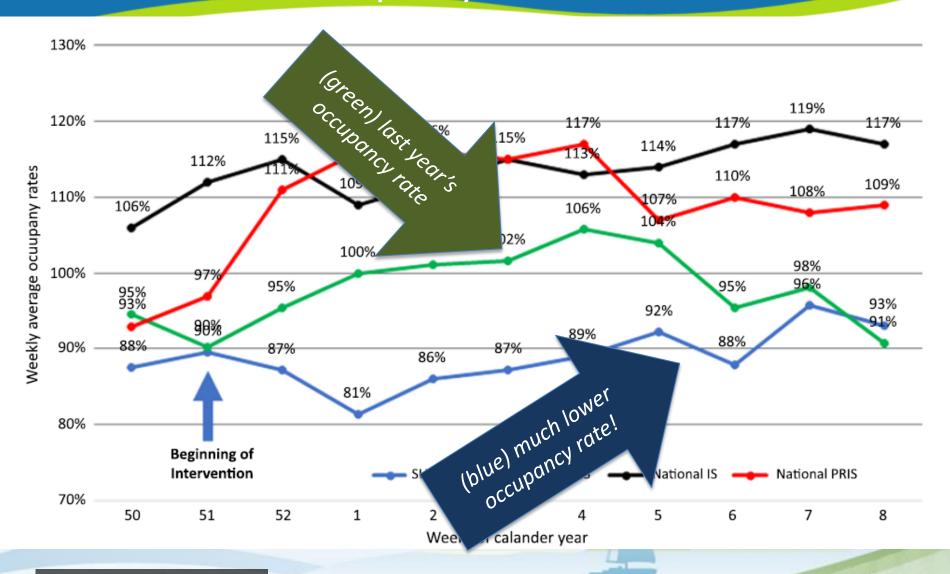
Hayden, NEJM, 2018

Now FDA approved for high risk pts as of Oct 2019

Original Article


The impact of incorporating early rapid influenza diagnosis on hospital occupancy and hospital acquired influenza

Lior Nesher MD^{1,2}, Gal Tsaban MD^{1,2}, Jacob Dreiher MD PhD^{2,3}, Kenneth V.I. Rolston MD⁴, Gal Ifergane MD^{2,3}, Yonat Shemer PhD^{2,5}, Abraham Borer MD^{1,2,a} and Klaris Riesenberg MD^{1,2,a}


¹Internal Medicine Division, Infectious Disease Institute, Soroka Medical Center, Beer Sheba, Israel, ²Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheba, Israel, ³Hospital Administration, Soroka University Medical Center, Beer Sheba, Israel, ⁴Department of Infectious Diseases, Infection Control, and Employee Health, University of Texas MD Anderson Cancer Center, Houston Texas, United States and ⁵Laboratory for Clinical Virology, Soroka Medical Center, Beer Sheba, Israel

2018 Rapid Shorter GAP: flu testing hospital stays, Cost In Hospital Vs. lower implications? 2017 occupancy **Complications?** standard of rates care Nesher, ICHE 2019

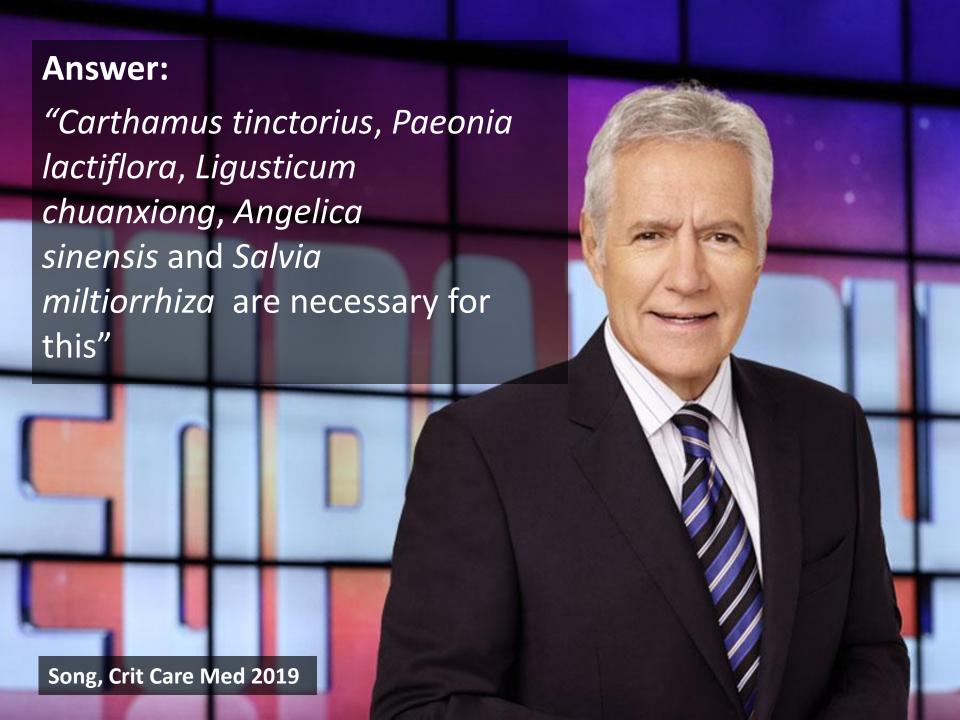
Rapid Flu testing + communication resulted in faster discharge rates

Rapid Flu testing + communication resulted in lower occupancy of medicine beds

JAMA | Original Investigation

N95 Respirators vs Medical Masks for Preventing Influenza Among Health Care Personnel A Randomized Clinical Trial

Lewis J. Radonovich Jr, MD; Michael S. Simberkoff, MD; Mary T. Bessesen, MD; Alexandria C. Brown, PhD; Derek A. T. Cummings, PhD; Charlotte A. Gaydos, MD; Jenna G. Los, MLA; Amanda E. Krosche, BS; Cynthia L. Gibert, MD; Geoffrey J. Gorse, MD; Ann-Christine Nyquist, MD; Nicholas G. Reich, PhD; Maria C. Rodriguez-Barradas, MD; Connie Savor Price, MD; Trish M. Perl, MD; for the ResPECT investigators


In outpatient setting

N95 compared to medical masks No difference in lab confirmed flu in HCWs

GAP:
What about
inpatient, and
AGMPs?

Radonovich, JAMA 2019

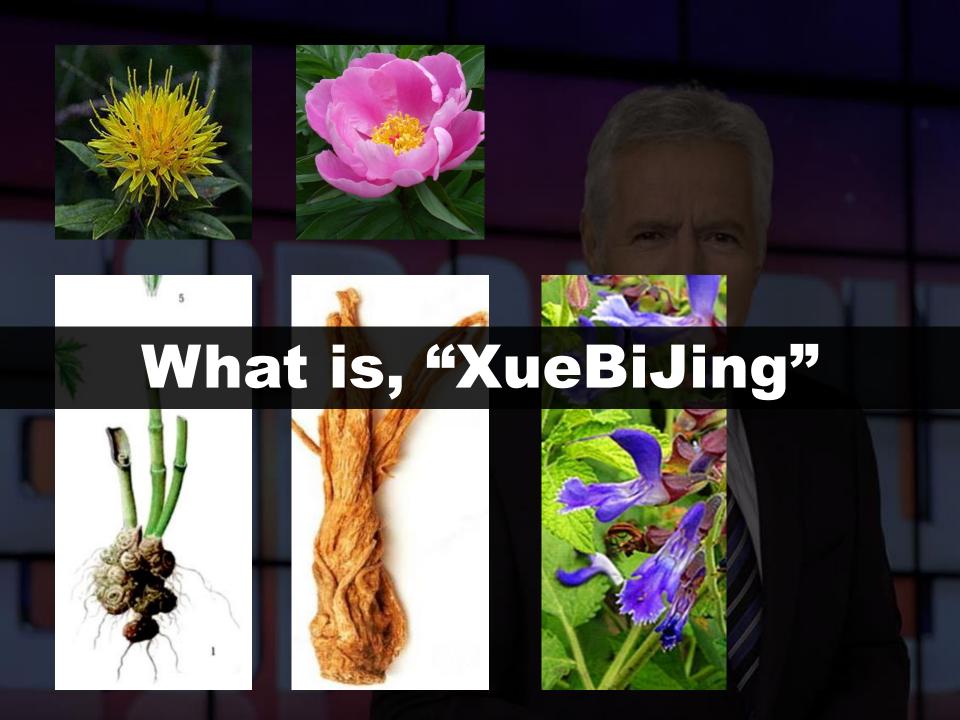
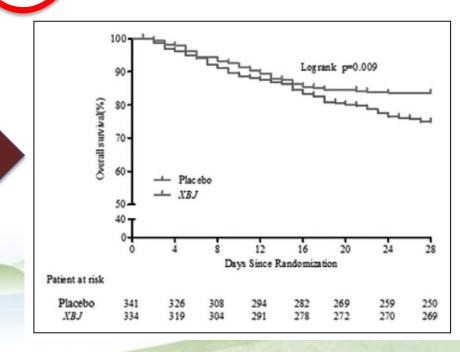



TABLE 3. The Primary and Three Secondary Outcomes

Variable	XueBiJing Recipients (n = 334)	Placebo Recipients (n = 341)	Between-Group Different (95% CI)	P
Primary outcome				
Pneumonia severity index improvement rate at day 8, n (%	203 (60.8%)	58 (46.3%)	14.4% (6.9-21.8%)	< 0.001
Secondary outcomes		1		
28-d mortality, <i>n</i> (%)	53 (15.87)	84 (24.63)	8.8% (2.4-15.2%)	0.006
The time of mechanical ventilation, d, median (IQR)	11 (6, –)	16.5 (7, –)		0.012
Total duration of ICU stay, d, median (IQR)	12 (7, –)	16 (9, –)		0.004

Significantly improvement in pneumonia, mortality, ICU stay

Song, Crit Care Med 2019

Asymptomatic Carriers Contribute to Nosocomial Clostridium difficile Infection: A Cohort Study of 4508 Patients

Thomas Blixt,^{1,2} Kim Oren Gradel,^{3,4} Christian Homann,² Jakob Benedict Seidelin,^{2,5} Kristian Schønning,^{6,7} Anne Lester,^{6,8,9} Jette Houlind,^{8,9} Marie Stangerup,^{8,9} Magnus Gottlieb,¹⁰ and Jenny Dahl Knudsen^{6,8,9}

In hospital setting, screened all admitted patients for CDI

Rate of CDI in exposed vs unexposed patients

cDI in 2.6% unexposed patients and 4.6% in exposed

GAP:
Can this
training be
replicated
elsewhere?

Blixt, Gastroenterology, 2017

Available online at www.sciencedirect.com

Infection Prevention in Practice

Healthcare Infection Society

journal homepage: www.elsevier.com/locate/ipip

Short Report

Detecting Clostridioides (Clostridium) difficile using canine teams: What does the nose know?

M.K. Charles a, Y. Wang b, T. Zurberg c, J. Kinna c, E. Bryce a,*

^a Division of Medical Microbiology and Infection Prevention, Vancouver Coastal Health and University of British Columbia Faculty of Medicine Vancouver, British Columbia Canada

University of British Columbia Undergraduate Integrated Sciences Program, Vancouver, British Columbia, Canada Quality and Patient Safety Department, Vancouver Coastal Health, Vancouver, British Columbia, Canada

In hospital setting

Two canine teams

Kappa agreement of 0.86 (excellent) GAP:
Can this
training be
replicated
elsewhere?

Charles, Inf Prev Pract, 2019

Bryce, JHI, 2017

Clostricium difficile Clostridiodes difficile

Original Article

Oral vancomycin prophylaxis during systemic antibiotic exposure to prevent *Clostridiodes difficile* infection relapses

Daniel A. Caroff MD, MPH^{1,2}, John T. Menchaca BA³, Zilu Zhang MS¹, Chanu Rhee MD, MPH^{1,4}, Michael S. Calderwood MD, MPH⁵, David W. Kubiak PharmD⁶, Deborah S. Yokoe MD, MPH⁷ and Michael Klompas MD, MPH^{1,4}

In hospital setting, patients with CDI history

When given abx, start PO VANCO prophylaxis vs

No consistent benefit observed GAP:
Is there
benefit with
certain abx vs
others?

Caroff, ICHE, 2019

	90 d From Antibiotic Exposure		180 d From Antibiot	180 d From Antibiotic Exposure				
Variable	Relapses per Patient	(%) OR (95% CI)	Relapses per Patient (%)	OR (95% CI)				
Unadjusted analysis								
No prophylactic antibiotic (referent)	53/567 (9.35)		54/567 (9.52)					
Oral vancomycin	19/193 (9.84)	1.06 (0.60-1.81)	22/193 (11.40)	1.22 (0.71–2.04)				
Adjusted analysis								
No prophylactic antibiotic (referent)	53/567 (9.35)		54/567 (9.52)					
Oral vancomycin	19/193 (9.84)	0.63 (0.35-1.14)	22/193 (11.40)	0.72 (0.41–1.29)				
Relapse defined by toxin test (ELISA) only								
No prophylactic antibiotic (referent)	42/567 (7.41)		43/567 (7.58)					
Oral vancomycin	14/198 (7.25)	0.58 (0.30-1.15)	17/193 (8.81)	0.67 (0.35–1.28)				
1 positive C. difficile test in the prior 12 months								
No prophylactic antibiotic (referent)	37/3 53 (10.48)	benefit	37/353 (10.48)					
Oral vancomycin	10/1 18 (8.47)	observed (0.19-0.93)	11/118 (9.32)	0.44 (0.20-1.0)				
≥2 positive <i>C. difficile</i> tests in the prior 12 months								
No prophylactic antibiotic (referent)	13/166 (7.83)	<i>j</i>	14/166 (8.43)					
Oral vancomycin	7/64 (10.94)	1.19 (0.42–3.33)	9/64 (14.06)	1.29 (0.49–3.38)				
Patients treated for 100% of antibiotic days								
No prophylactic antibiotic (referent)	53/567 (9.35)		54/567 (9.52)					
Oral vancomycin	12/118 (10.17)	0.76 (0.38–1.52)	14/118 (11.86)	0.82 (0.42-1.60)				
Patients treated for 100% of antibiotic days, excluding unexposed patients who received oral vancomycin ≥3 d following antibiotic exposure								
No prophylactic antibiotic (referent)	46/489 (9.41)		47/489 (9.61)					
Oral vancomycin	12/118 (10.17)	0.86 (0.44-1.69)	14/118 (11.86)	0.81 (0.41-1.59)				
Caroff, ICHE, 2019	1 3 0 3 4			VENEZA				

MAJOR ARTICLE

A Randomized, Placebo-controlled Trial of Fidaxomicin for Prophylaxis of *Clostridium difficile*–associated Diarrhea in Adults Undergoing Hematopoietic Stem Cell Transplantation

Kathleen M. Mullane, Drew J. Winston, Ajay Nooka, Michele I. Morris, Patrick Stiff, Michael J. Dugan, Henry Holland, Kevin Gregg,
Javier A. Adachi, Steven A. Pergam, Barbara D. Alexander, Erik R. Dubberke, Natalya Broyde, Sherwood L. Gorbach, and Pamela S. Sears

In hospital setting, LBMT patients

FQ + Fidaxomicin vs placebo Benefit
observed in
fidaxomicin
arm for lab
confirmed CDI

GAP:
What about
other
antibiotics
other than
FQ?

JAMA Surgery | Original Investigation

Association of Duration and Type of Surgical Prophylaxis With Antimicrobial-Associated Adverse Events

Westyn Branch-Elliman, MD, MMSc; William O'Brien, MS; Judith Strymish, MD; Kamal Itani, MD; Christina Wyatt, MD; Kalpana Gupta, MD, MPH

Cardiac, ortho, colorectal, vascular surgical patients

ABX prophylaxis <24h, 24-48h, 48-72h, >72h Increasing duration associated with AKI, CDI, time dependent

Opportunity Let's keep on collaborating with ASP!

Branch-Elliman, JAMA Surgery 2019

ORIGINAL ARTICLE

Changes in Prevalence of Health Care– Associated Infections in U.S. Hospitals

S.S. Magill, E. O'Leary, S.J. Janelle, D.L. Thompson, G. Dumyati, J. Nadle, L.E. Wilson, M.A. Kainer, R. Lynfield, S. Greissman, S.M. Ray, Z. Beldavs, C. Gross, W. Bamberg, M. Sievers, C. Concannon, N. Buhr, L. Warnke, M. Maloney, V. Ocampo,

Point
Prevalence
Survey ~200
US hospitals

2011 *vs* 2015

Prooks, T. Ovewum S. Sharmin

overall HAI's decrease driven by SSI & UTI

Gap: what about pneumonia, CDI, BSI's?

J. Rainbow, M. Samper

helps, and J.R.

ence Surve

SSI and UTIs were significantly lower in repeat point prevalence study 2011 vs 2015

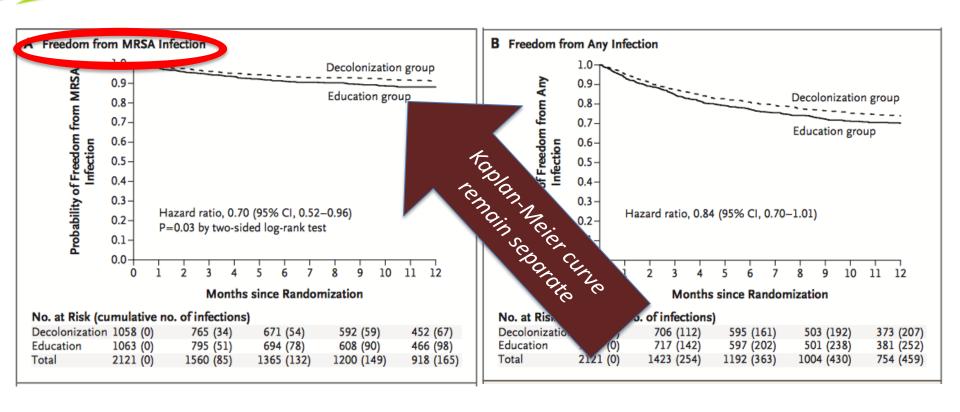
Table 4. Percentages of All Surveyed Patients with Specific Types of Health Care-Associated Infection, 2011 vs. 2015 Survey.*							
Type of Infection	2011 Survey			2015 Survey			P Value†
	No. of Patients with Infection	No. of Infections	Percentage of Patients with Infection (95% CI)	No. of Patients with Infection	No. of Infections	Percentage of Patients with Infection (95% CI)	
Pneumonia	110	110	0.98 (0.81-1.20)	110	110	0.89 (0.74-1.10)	0.52
Ventilator-associated pneumonia	43	43	0.38 (0.28-0.51)	39	39	0.32 (0.23-0.43)	0.41
Other pneumonia	67	67	0.59 (0.47-0.75)	71	71	0.58 (0.46-0.73)	0.87
Gastrointestinal infection	86	86	0.76 (0.62-0.94)	91	91	0.74 (0.60-0.91)	0.84
Clostridium difficile infection:	61	61	0.54 (0.42-0.69)	66	66	0.54 (0.42-0.68)	0.97
Other gastrointestinal infection	25	25	0.22 (0.15-0.33)	25	25	0.20 (0.14-0.30)	0.76
Surgical-site infection	109	110	0.97 (0.80-1.20)	69	69	0.56 (0.44-0.71)	< 0.001
Deep incisional or organ-space infection	77	77	0.68 (0.55-0.85)	54	54	0.44 (0.34-0.57)	0.01
Superficial incisional infection	33	33	0.29 (0.21-0.41)	15	15	0.12 (0.07-0.20)	0.004
Bloodstream infection	50	50	0.44 (0.34-0.58)	51	52	0.41 (0.31-0.55)	0.74
Central catheter–associated bloodstream infection	42	42	0.37 (0.27–0.50)	37	38	0.30 (0.22–0.42)	0.35
Other primary bloodstream infection	8	8	07 (0.03–0.14)	14	14	0.11 (0.07-0.19)	0.29
Urinary tract infection	65	over	8 (0.45–0.73)	39	39	0.32 (0.23-0.43)	0.003
Catheter-associated urinary tract ir	- drove	the	(0.29–0.52)	24	24	0.20 (0.13-0.29)	0.005
Other urinary tract infection	UTI drove decrease	in HAl's	(0.12–0.29)	15	15	0.12 (0.07-0.20)	0.21
Other infection§	decrease		0.69 (0.55–0.86)	61	66	0.50 (0.39-0.64)	0.05
Any infection	uo	504	4.0 (3.7–4.4)	394	427	3.2 (2.9–3.5)	<0.001

ORIGINAL ARTICLE

Decolonization to Reduce Postdischarge Infection Risk among MRSA Carriers

S.S. Huang, R. Singh, J.A. McKinnell, S. Park, A. Gombosev, S.J. Eells, D.L. Gillen, D. Kim, S. Rashid, R. Macias-Gil, M.A. Bolaris, T. Tjoa, C. Cao, S.S. Hong,

Lequieu, E. Cui, J. Chang, J. He. K. Evans, E. Peterson, G. Simpson.


Multicenter, randomized, post-discharge

education vs education+ decolonization Decol group tein, M.K.
6.3% infection vs 9.2% in control

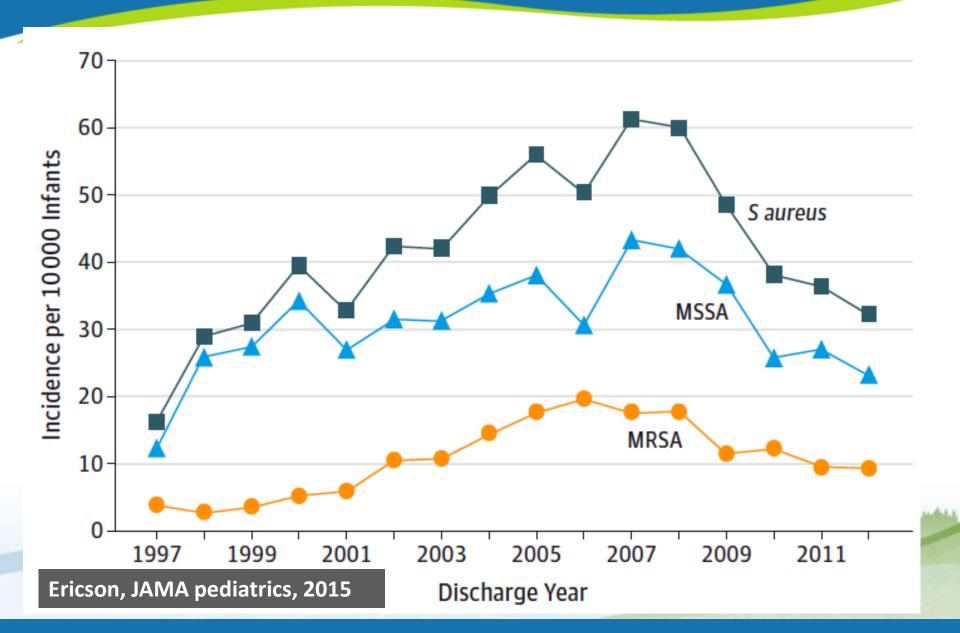
A. Amin, D. Go

Gap:
What are the cost / resistance implications?

Post discharge Education + decolonization significantly reduced MRSA infections

Original Investigation

Burden of Invasive *Staphylococcus aureus* Infections in Hospitalized Infants


Jessica E. Ericson, MD; Victor O. Popoola, MBBS, MPH, ScM; P. Brian Smith, MD, MPH, MHS;

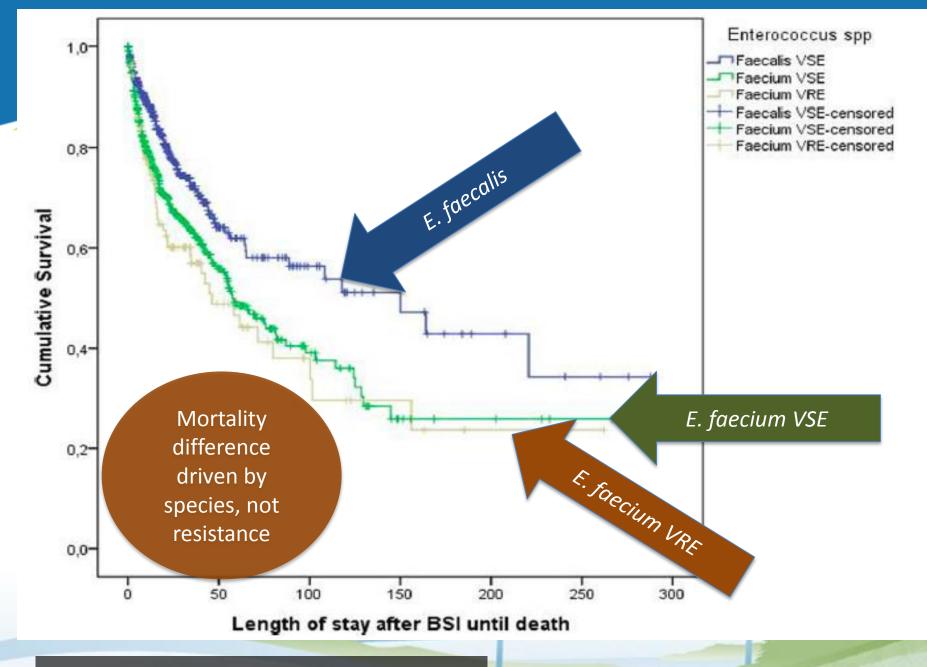
Daniel K. Benjamin, PhD; Vance G. Fowler, MD, MHS; Daniel K. Benjamin Jr, MD, PhD;

Reese H. Clark, MD; Aaron M. Milstone, MD, MHS

Multicenter, Retrospective cohort study, 348 NICU's, 3888 pts invasive infections with MSSA vs MRSA mortality similar, but MSSA 3:1 more common than MRSA opportunity:
should we
aim to
prevent MSSA
along with
MRSA?

Mortality similar in MRSA and MSSA invasive infection; MSSA more common = more deaths

The importance of adjusting for enterococcus species when assessing the burden of vancomycin resistance: a cohort study including over 1000 cases of enterococcal bloodstream infections


Tobias Siegfried Kramer^{1,2*}, Cornelius Remschmidt^{1,2}, Sven Werner³, Michael Behnke^{1,2}, Frank Schwab^{1,2},

Guido Werner^{4,5}, Petra Gastmeier^{1,2} and Rasmus Leistner^{1,2}

Multicenter, Retrospective cohort study, 1160 cases BSI

E. faecalis vs E. faecium; VR or VS E. faecium independent risk factor for mortality

Vanco resistance did not increase mortality risk, but increased costs

ORIGINAL ARTICLE

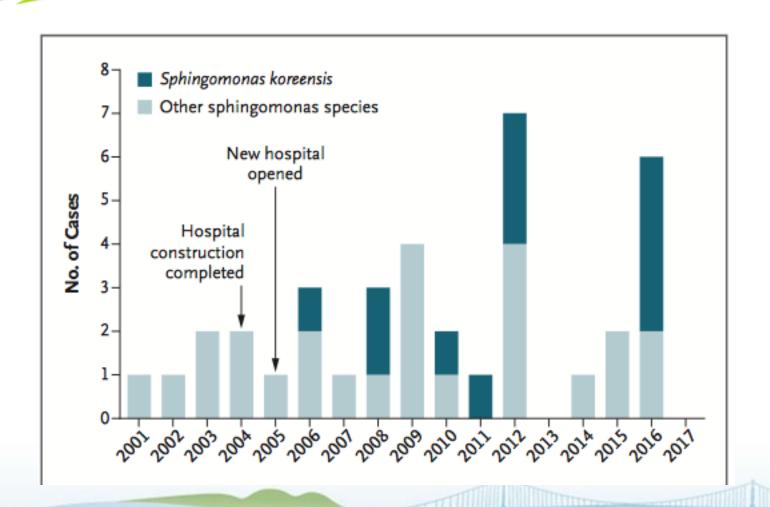
Investigation of a Cluster of Sphingomonas koreensis Infections

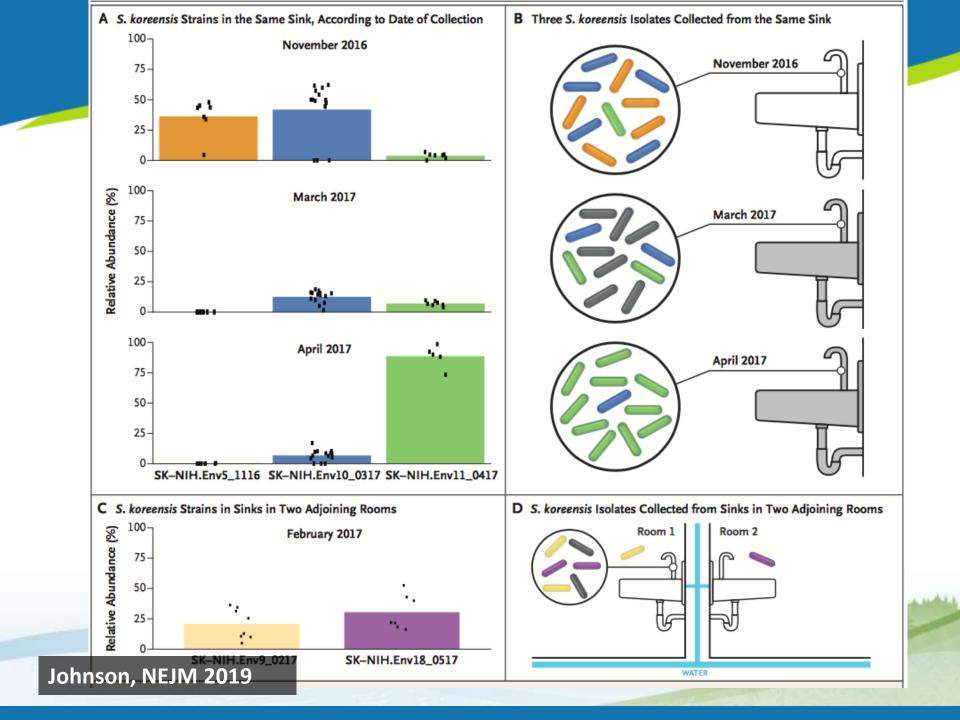
Ryan C. Johnson, Ph.D., Clay Deming, M.S., Sean Conlan, Ph.D., Caroline J. Zellmer, B.S., Angela V. Michelin, M.P.H., ShihQueen Lee-Lin, M.S., Pamela J. Thomas, Ph.D., Morgan Park, Ph.D., Rebecca A. Weingarten, Ph.D., John Less, P.E., C.H.F.M., John P. Dekker, M.D., Ph.D.,

WGS study S. koreensis isolates 2006-16 at NIH

12 patients infected, including 8 bacteremias

Karen


Musser, Ph.D., IPAC + FPI + MICRO + WGS + CLINICIAN + **FMO** teamwork needed


Opportunity: horizontal IPAC; plumbing important

Anna F. Lau, Pl

Ph.D.

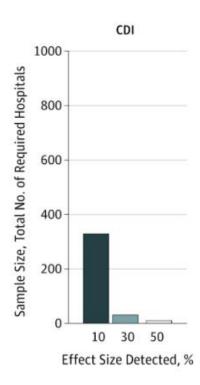
Prolonged Sphingomonas outbreak at the NIH

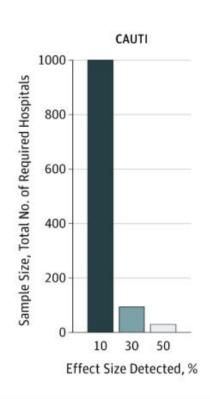
Original Investigation | Statistics and Research Methods

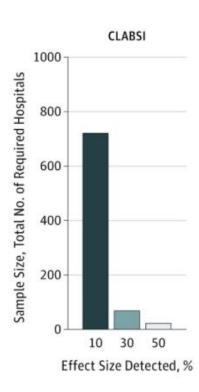
Sample Size Estimates for Cluster-Randomized Trials in Hospital Infection Control and Antimicrobial Stewardship

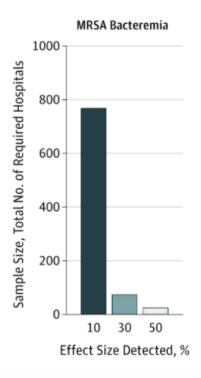
Natalia Blanco, PhD, MPH; Anthony D. Harris, MD, MPH; Laurence S. Magder, PhD, MPH; John A. Jernigan, MD, MS; Sujan C. Reddy, MD, MSc; Justin O'Hagan, PhD; Kelly M. Hatfield, MSPH; Lisa Pineles, MA; Eli Perencevich, MD, MS; Lyndsay M. O'Hara, PhD, MPH

longitudinal cohort study


estimated # of clusters needed to observe 10, 30, 50% decreases


Very large data sets needed for definitive guidance


Opportunity: fewer, but larger, higher quality studies!


Blanco, JAMA net 2019

With smaller predicted effect sizes, the number of clusters needed dramatically increases

C. auris
Emerging
pathogen causing
outbreaks,
difficult to
eradicate

FLU
new guidelines
new drug
Baloxivir
Rapid NAATs
Masking

CDI
Asymptomatic
carriage and risks
Abx Prophylaxis
K9 detection

HAI
HAI reduction
drivers
post-discharge
MRSA decol
'other' GNRs

OTHERS
PTSD, Stress and severe infections
XueBiJing

SUMMARY

ACKNOWLEDGEMENTS

- IPAC BC & Amira, Jacquie thank you for the invitation
- The super duper awesomeness bestest goodest incrediblest Infection Control Practitioners!!
- Our amazing technologists and the division of Medical Microbiology and Infection Prevention
- Crothall and our amazing EVS team
- FMO!!!
- Allison Muniak and VCH Quality Patient Safety and Infection Control
- Liz, Marthe, Teresa, Jaime, Meghan and the K9 team
- Marthe, Rita, Juliana, Mary, Tamara, Gail, Eric for C. auris work
- Aleksandra Gara and the Information, Solutions and Analytics team
- Richard Dixon and CHAIR Canada
- Linda Hoang, Joanne Archer and PICNET
- UBC and VGH Hospital Foundation for supporting quality improvement and research

NOTTODAY EBOLA. NOTTODAY!!!!

f fascinately

THANK YOU FOR YOUR ATTENTION

Promoting wellness. Ensuring care.

the northern way of caring

First Nations Health Authority Health through wellness

How you want to be treated.

Provincial Health Services Authority

Province-wide solutions. Better health.

