SciCan: Your Infection Control Specialist

- Canadian company
 Founded in 1957
 - 60 years of experience in the healthcare market
 - Present in over 100 countries around the world
 - 2 specific business areas:
 - SciCan Dental
 - SciCan Medical

*Sci*Can

Your Infection Control Specialist"

Contamination control Healthcare safety

Air Treatment Systems in Healthcare Settings

plasmair () a .a airinspace

Thibaud BOISTON Kelsey MAH

Your Infection Control Specialist™

© airinspace 2018

airinspace® worldwide cover

FRANCE	 Paris Assistance Publique Hospitals : Saint Antoine, Necker, Saint-Louis, Louis Mourier, University Hospitals : Marseille, Montpellier, Bordeaux, Lille, Strasbourg, Nantes, Brest, Dijon, Lyon, St-Etienne
GERMANY	Leipzig, Dresden, Munich, Berlin, Lubeck, Munchen, Bonn
CHINA	Rui Jin Shangaï, Pekin Hôpital 301 (military), Suhzou, Wuhan, Canton
JAPAN	Tokyo, Osaka
TURKEY	Ankara, Antalya, Izmir
SAUDI ARABIA	Ryhad
UNITED ARAB EMIRATES	Dubaï, Abu Dabi, Fujairah
ALGERIA	Alger University hospital, Beni Messous, Batna, Pierre et Marie Curie, Blida
MAROCCO	Casablanca, Marrakech

See all

Sta W

Our mission

Improve air quality in hospitals' high risk areas.

- Reduce airborne infections and related costs
- Comply with international and/or local standards
- Improve patient and staff safety

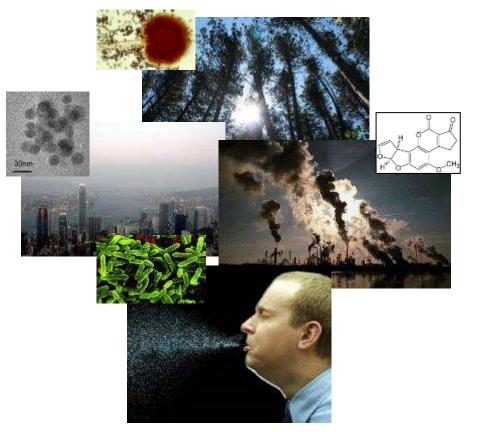
Part I

Air quality – general principles

Contaminants that affect air quality

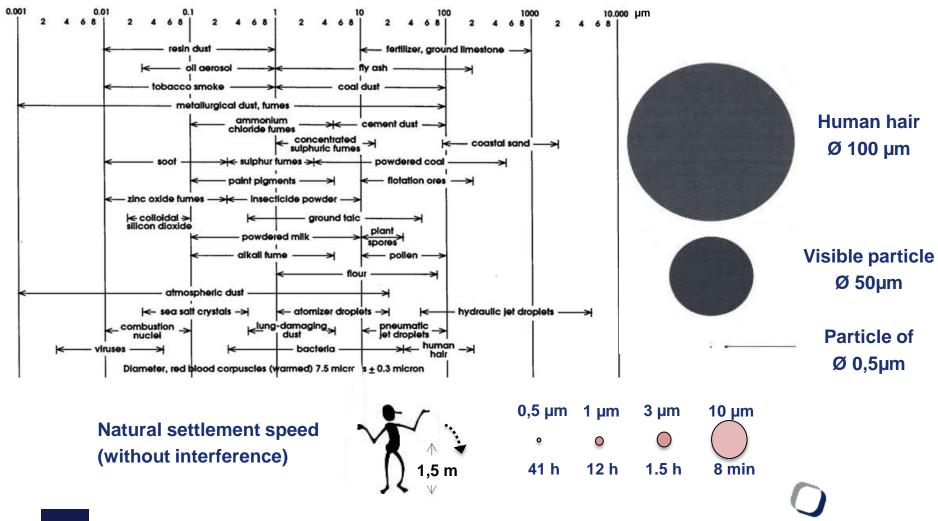
Different types of contaminants :

- Inert particles (mineral or organic)
- Airborne biocontamination
- Gaseous pollution


Different sources of emission :

- Natural
- Human
- Industrial

Various intrinsic parameters :


- Liquid, solid or gas form
- Concentration, size, mass, morphology
- Toxicity, pathogenicity, virulence

Specific risk assessment is required for adequate air treatment

airinspace

Relative size of airborne particles

airinspace

US infection control guidelines

CDC Guidelines / List of pathogenic agents with airborne transmission risk

Evidence for airborne transmission	Fungi	Bacteria	Viruses
Numerous reports in healthcare facilities	Aspergillus spp Mucorales (Rhizopus spp.)	Mycobacterium tuberculosis	Measles (Rubeola) virus Varicella-Zoster virus
Occasional reports in healthcare facilities (atypical)	Acremomium spp. Fusarium spp. Pseudoallescheria Boydii Scedosporium spp. Sporothrix cyanescens	Acinetobacter spp Bacillus spp Brucella spp Staphylococcus aureus Group A Streptococcus	Smallpox virus (Variola) Influenza virus Respiratory syncytial virus Adenoviruses Norwalk-like virus
No reports in healthcare facilities ; known to be airborne outside	Coccidioides immitis Cryptococcus spp. Histoplasma capsulatum	Coxiella Burnetii (Q fever)	Hantaviruses Lassa virus Marburg virus Ebola virus Crimean-Congo virus
Under investigation	Pneumocystis carinii	N/A	N/A

Part II

Air treatment in healthcare settings

Air treatment must be considered supplemental to standard infection control practices (<20% HAI)

- MD sterility
- Prophylaxis (antibiotic / antifungal)
- Pre-operative shower
- Hands hygiene

(...)

 \succ

- Biocleaning of surfaces / equipments
- Single-use PPE : Gloves/Gown/Hat/Shoe-covers
- Sealed windows, doors kept close
- End-point filtration of water point at risk
- clean / soiled circuits or « one way flow »
- Houseplants, flowers, cardboards forbidden

Two strategies depending on risk nature : Protection or Isolation

PROTECTION (Protective Environment – PE)

- Immune-suppressed / Immunecompromised patients
- Exposed patients (wounds, invasive MD)

> **ISOLATION** (Airborne Isolation – AI)

Septic patients

PATIENT

PROCES

- Sterile process : Compounding / MD sterilization / ...
- Bio-safety laboratories
- Cytotoxic drugs
- Dangerous chemicals handling

Main medical applications concerned

Protection of immune-suppressed patients

- BMT unit (Hematology ICU)
- Hematology (AML / ALL / Medullar Aplasia)
- Organ transplants (post-surgery hosting in ICU)

Protection of exposed or immune-compromised patients

- CCU / ICU (depending on patients)
- Infectious diseases (AIDS patients)
- Burnt units (heavily burnt)
- Operating rooms or interventional radiology

Protection of sensible products or process

- Drug preparation (GMP scope)
- Central Sterilization
- Cell culture (biological contamination)
- IVF laboratories (biological and chemical contamination)

Airborne isolation of infectious patients or process at risk

- Infectious Diseases (TB wards, Airborne transmitted pathogens)
- CCU / ICU (Contagious patients at risk of env. dissemination)
- Bio-Safety Laboratories
- Cytotoxic drugs preparation
- Anatomo-pathology labs (chemical exposure)
- Endoscope disinfection facilities (chemical exposure)

airinspace

Part III

Focus on fungal infection risk

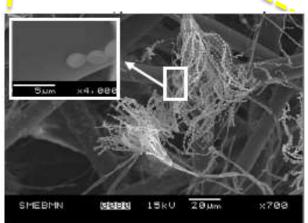
Fungal infections transmission routes

- Fungi create very small spores
 (~ 3 µm pour Aspergillus spp)
- Fungal spores are naturally present in the air (morphology adapted for airborne transport)
- Spores are also present on surfaces
- Additional risk factors
 - Construction works
 - Renovation activities

airinspace

Traditional mechanical filters are exposed to secondary contamination risks

Risk : Microbial growth


Described in numerous scientific studies : Bonnevie-Perrier et al. "<u>Microbial Growth onto</u> <u>Filter Media Used in Air Treatment devices</u>", IJCRE, Vol 6 A9, *2008*.

Result : Microorganisms release

Numerous HCAI caused by poorly maintained air treatment systems.

Filters replacement is a high risk operation for technical staff.

Patients at risk of fungal infection

Patient typology

- Recipients of solid organ transplant
- Hematopoïetic stem cell transplants
- Patients with hematologic malignancies
- Patients receiving immunosuppressive therapy
- Patients with severe aplasia
 - Polynuclear neutrophils
 (PNN) < 500/mm³
 - Platelets < 20 000/mm³
 - Reticulocytes < 20 000/mm³

Why more and more patients ?

- Increase treatment proportion of patients with critical illnesses, previously considered lethal, due to rapid advances in medicine
- Development of more intensive chemotherapy
- Growing number of transplants
- Widespread of immunosuppressive therapies to treat autoimmnune diseases

Salam et al., AJIC 2010

Part IV

Regulations, standards and guidelines

US infection control guidelines

CDC environmental guidelines / « Air » section

C. Air	20
1. Modes of Transmission of Airborne Diseases	
2. Airborne Infectious Diseases in Health-Care Facilities	
3. Heating, Ventilation, and Air Conditioning Systems in Health-Care Facilities	
4. Construction, Renovation, Remediation, Repair, and Demolition	
5. Environmental Infection-Control Measures for Special Health-Care Settings	
6. Other Aerosol Hazards in Health-Care Facilities	

- List of airborne infectious diseases of concern
- HVAC systems conception (OT PE AI CCU room)
- Construction work management
- > Environmental monitoring (particles only with no target)

International air quality standard

ISO 14644-1(2015) : Cleanrooms and associated controlled environments - Part 1: Classification of air cleanliness by particle concentration / ISO classes definition

ISO class	Maximum permitted number of particles per m ³ of size ≥ to					
number (N)	0,1 μm	0,2 μm	0,3 μm	0,5 µm	1 µm	5 µm
1	<i>10</i> b	d	d	d	d	е
2	100	24 ^b	<i>10</i> b	d	d	е
3	1 000	237	102	35 ^b	d	е
4	10 000	2 370	1 020	352	83 ^b	e
5	100 000	23 700	10 200	3 520	832	d, e, f
6	1 000 000	237 000	102 000	35 200	8 320	293
7	с	с	с	352 000	83 200	2 930
8	с	с	с	3 520 000	832 000	29 300
9g	с	с	с	35 200 000	8 320 000	293 000

Extract from ISO 14644-1 French edition, 2016

International air quality standard ISO 14698-1(2003) : Cleanrooms and associated controlled environments - Biocontamination control - Part 1: General principles and methods

> No targets – Methodology standard to establish biocontamination monitoring procedures

Air Sampling recommendations :

- Number of sampling points : 1 min (2 advised)
- Iterations of samples : 1 min (2-3 advised)
- Heigth of sampling : ~ 1000 mm
- Volume sampled per point : 1 m³ / 1000 L (500 L suitable for suspected high contamination)
- Advised culture media :
 - Bacterias (Total Mesophilic Flora) : Plate Count Agar (PCA) or Trypticase Soya Agar (TSA)
 - Fungi (Total Fungal Flora) : Sabouraud Agar or Malt Agar (+Gentamycine / Chloramphenicol possible)
- Advised Incubation :
 - Total Mesophilic Flora : +37°C counted 24h / verified 48h
 - Total Fungal Flora : +24 30°C verified 24h / counted 72h / verified 1 week

French standards

NF S 90 351:2013 Performance targets for air contamination control

Risk class	Particulate cleanliness class	Microbiological cleanliness class	1log Particulate elimination time	Diff. Pressure (+ or -)	Airflow pattern	ACH
4	ISO 5	< 1 CFU/m ³	< 5 min	15 Pa ± 5 Pa	Unidirectionnal	6 ACH of fresh air +adequ. Air speeds for flow
3	ISO 7	< 10 CFU/m ³	< 10 min	15 Pa ± 5 Pa	Unidirectionnal OR Turbulent	>15 ACH
2	ISO 8	< 100 CFU/m ³	< 20 min	15 Pa ± 5 Pa	Turbulent	>10 ACH

US infection control guidelines

CDC Guidelines / Application-specific guidelines

Specifications	All room (bronchoscopy included)	PE room	Critical care room §	Isolation anteroom	Operating room
Air pressure ¶	Negative	Positive	Positive, négative or neutral	Positive or negative	Positive
Room air changes	≥6 TRH (for existing rooms) ≥12 TRH (for renovation or new construction)	≥12 ACH	≥6 ACH	≥10 ACH	≥15 ACH
Sealed **	Yes	Yes	No	Yes	Yes
Filtration supply	90% (ASHRAE 52.1.1992)	99.97% (filtration of fungal spores at point of use (HEPA at 99,97% for 0.3 μm particles))	> 90%	> 90%	90%
Recirculation	No (Recirculation possible if exhaust air first processed through HEPA filter)		Yes	No	Yes

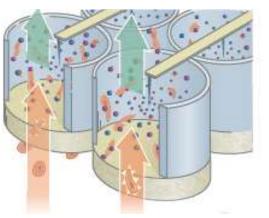
§ Positive filter and HEPA filters may be preferred in some rooms in intensive care units (ICUs) caring for large numbers of immunocompromised patients

¶ Clean to dirty : negative to an infectious patient, positive away from an immunocompromised patient

** Minimized infiltration for ventilation control : pertains to windows, closed doors, and surface joints

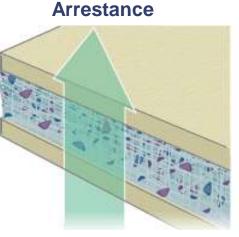
Contamination control Healthcare safety

PLASMAIRTM

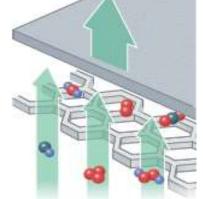

The reference in hematology and high risk areas

HEPA-MD[™] technology

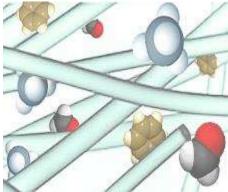
> Broad-spectrum efficacy : particles, microorganisms and molecular pollution


- The risk of microbial growth is eliminated
- > Low pressure drop profile : low noise emission, low energy consumption
- 1. Microbial Destruction

Destruction of airborne microorganisms by exposure to strong electric fields and to oxidative species in unique nonthermal plasma chambers Charged materials exiting stage 1 are captured by an electrically active media where organic materials are continuously exposed to the plasma ions


Oxidant chemical species are removed by a catalytic monolith (notably ozone and NOx)

Organic and mineral volatile molecular pollutants are adsorbed onto an activated carbon medium **airinspace**


2. Biological decontamination

and High Efficiency Particulate

3. Catalytic

Conversion

HEPA-MD[™] Technology evaluated by leading international Labs

Species		Description	SPBR ¹ Rate	Test Laboratories
Bacillus Subtilis (Gram+ bacteria / spore)		Very resistant bacteria. Model for Anthrax which is a bioterrorism threat	>99.93%	HARVARD School of Public Health
BCG Mycobacterium Bovis (bacteria)		Vaccine against tuberculosis	>99.99%	CRES Departed the Theffend
Staphylococcus Aureus (Gram+ bacteria)		Most common cause of staph infections that cause skin infections, pneumonia, meningitis and endocartidis	>99.84%	HARVARD School of Public Health
Aspergillus niger (Fungal / spore)	1.22 O	Pathogen filamentus fungi that cause aspergillosis in immuno-compromised patients	>99.99%	HARVARD School of Public Health
Serratia Marcescens (Gram- bacteria)	S.M.	Human pathogen involved in numerous HAIs, particularly urinary tract and wound infections	>99.99%	HARVARD School of Public Health
H5N2 (Virus)	- AN	Avian influenza virus which can be lethal to human	>99.999%	CERTS Segued to Tretime
Vaccinia (Virus)	and the second	Very resistant airborne virus. Model for Smallpox which is a bioterrorism threat	>99.2%	Totality Production Agrees
MS2 Bacteriophage (Virus)	\bigcirc	One of the smallest known viruses (~20 nm in diameter)	>99.999%	Heaten Heatenstein Agaroy

airinspace

¹ Single-Pass Biological Reduction: highest SPBR rate achieved using AirInSpace HEPA-MD™ device in one of the above listed test laboratories.

A broad range products

Light mobile air decontamination unit

Ceiling-mounted air decontamination unit

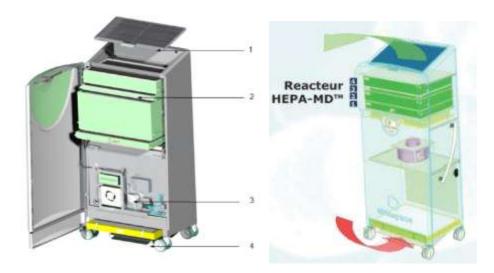
PLASMAIR[™] range include HEPA-MD[™] technology

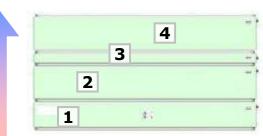
The reference in high risk area

- Very fast particle and microorganism reduction kinetic
- High flow rate (2500 m³/h)
- Fungi < 1 CFU/m³
- Reduce from ISO 9 to ISO 7/ISO 6 in a few minutes
- Very quiet
- 2 preset ventilation regimes (day/night) with automatic programmable change
- Continuous recording of in-use parameters with large data storage
- Large touch screen 4,3"

Compact and easy solution for securing high infectious risk areas (ISO7/ISO8) up to 50m³

- Fully mobile
- Easy to use
- Small footprint
- Low noise level
- Low energy consumption


Performance range (for rooms up to 50 m ³)				
Airborne Bacteriological class <100/<10 CFU/m ³				
ISO Particulate cleanliness class	IS08/IS07			
90% Decontamination kinetics	Within 20/10 minutes			
Dimensions and weight				
Height	150 cm			
Width	70 cm			
Depth	45 cm			
Weight	100 kg			
Technical specifications				
Airflow range 400-600-850 m ³ /h				
Max power consumption.	130 VA			
Sound levels at 1m	400 m ³ /h - 37 dB(A) 600 m ³ /h - 41 dB(A) 850 m ³ /h - 47 dB(A)			
Frequency and voltage	~ 100 V/230 V - 50 Hz/60 Hz			



HEPA-MD[™] technology

- 1. Removable outlet grill
- 2. Reactor module
- 3. Electrical control Panel
- 4. Pre-filter

Decontaminated Air

Contaminated Air

- 1 : Microbial Destruction
- 2 : Biological and particulate arrestance
- 3 : Catalytic conversion
- 4 : Molecular trapping

The reference in high risk area

Large & intuitive touch screen

Icons	Information
ОК	This icon indicates that the device is working correctly
	This icon indicates a warning
	This icon indicates an alarm
	This icon indicates the ventilation speed: DAY/NIGHT
% m ³	These icons indicate the actual air flow and the programmed room volume
¢°	Access key to the Setup Menu
\odot	Signal that automatic night-time programmer is activated
-	Signal that manual mode is activated

How to choose an efficient mobile filtration unit ?

- Lowest noise
- Technology adapted to the nature of the contaminations
- No release of toxic substances
- Capability to decontaminate the entire room volume
- High flow rate adaptable to room volume and standard
- Intuitive controls
- Really mobile
- Easy to maintain
- Performances validated by independent laboratories and published studies

Examples of applications

Operating Room low surgery – 60 m³ PA-S blowing at 355 m³/h ISO9=> ISO7 in less than 7 min Positive pressure of 21 Pa Operating Room. Ophtalmology 78 m3 PLASMAIR T2006NG – 1400 m3 ISO9 => IS07 in less than 10 min

Example of applications

Hematology – Autologous BMT Patient room 55 m³ PA-T2006NG – 1,000 m³/h ISO9=> ISO7 in less than 10 min

Hematology – Allogenic BMT Patient room IMMUNAIR w/T2006NG– 1100 m³/h ISO9 => IS05 in less than 6 min

Contamination control Healthcare safety

Protective environment

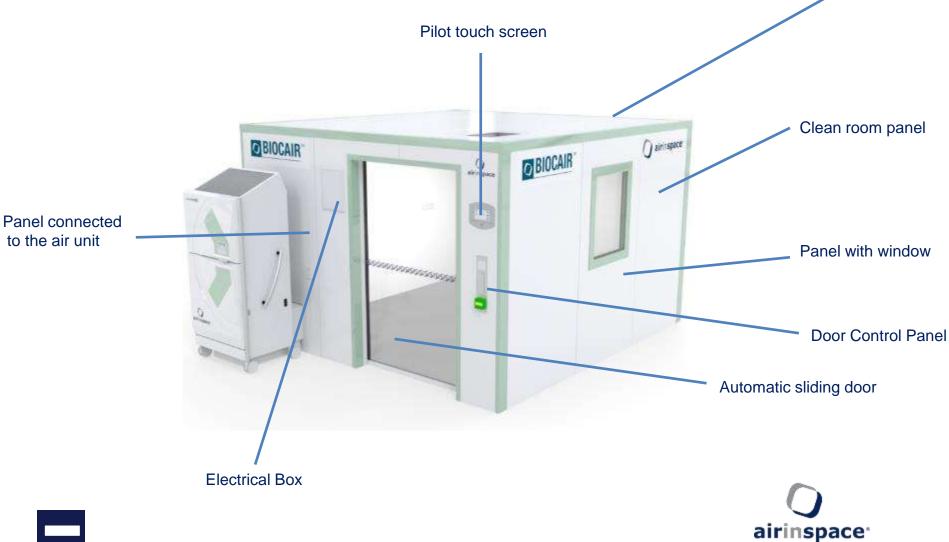
© airinspace 2016

Contamination control Healthcare safety

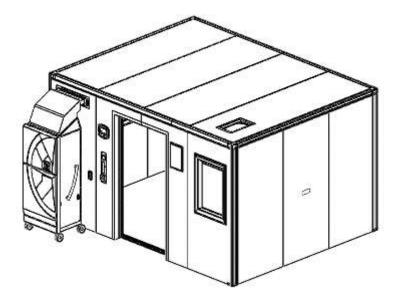
BIOCAIRTM

Modular isolation room or protective environment

INNOVATION 2016 BIOCAIR[™] description


- Modular equipment to create a pressure controlled area
- Different configurations and dimensions are available
- Several options :
 - Flat screen TV
 - Decorated ceiling

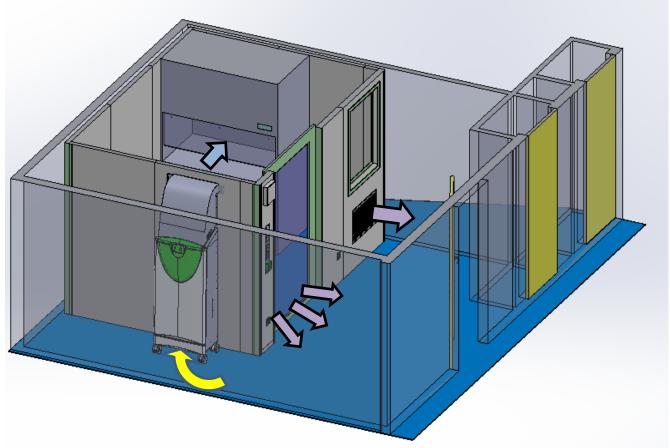
BIOCAIR[™] description

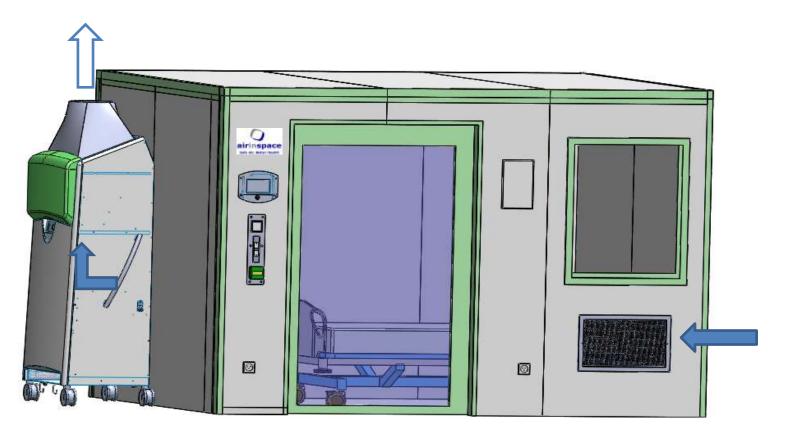



Ceiling panel

2 different approaches

BIOCAIR[™] Positive pressure ISO5 to protect patients at risk


BIOCAIR[™] Negative pressure to avoid contamination spread out

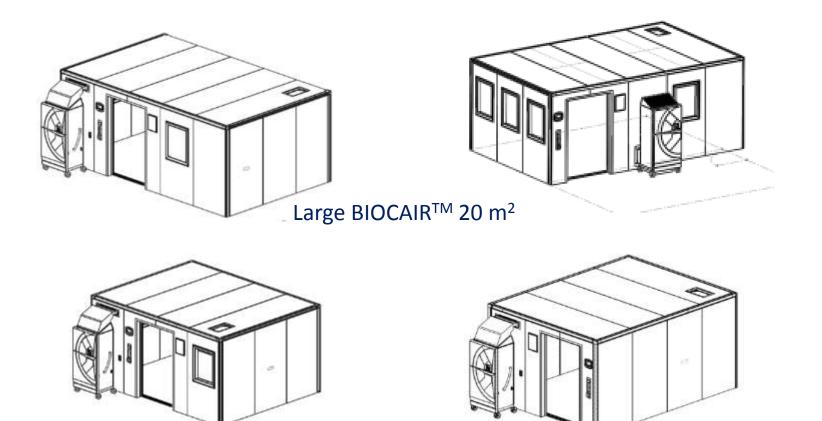


Aeraulic simulation BIOCAIR[™] with positive pressure

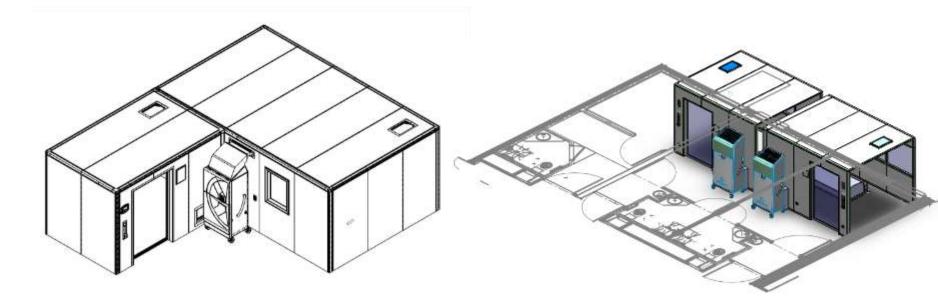
BIOCAIR[™] with negative pressure Infectious Risk Management Plasmair outlet connected to Hospital Air Exhaust

BIOCAIR[™] Control panel

- 7-inch color touch screen control panel on the front outside to visualize in real time:
- The differential pressure
- The indoor temperature
- Indoor relative humidity
- The settable alarms
- The blowing rate of the PLASMAIR unit
- The adjustment parameters (pressure set etc ...)
- Records (alarm log and warnings)
- Control panel also integrates a USB port to retrieve the data stored in text format (.txt / .csv)


A connection ModBus series is also available to connect the hospital network and system Building Management System

Examples of configurations



Medium BIOCAIR[™] 16 m²

Possibility of combinaisons

Two isolation rooms 12 m²

Large 20 m² (+30Pa) + Anteroom 8 m² (+15Pa)

airinspace®'s laboratory : Assemblying & Testing = 3 days

© airinspace 2016

airinspace[,]

airinspace® mobile air treatment benefits

- **PLASMAIR[™]** Destroys microorganisms (unlike conventional mechanical filters)
- Reduced operational costs (low pressure drop profile / point of use air treatment)
- Robust and efficient (scientifically tested and validated thoroughly)
- Ease of set-up and use (plug-and-play designs)

Contamination control Healthcare safety

THANK YOU !

